Exploiting gradients and Hessians in Bayesian optimization and Bayesian quadrature

31 Mar 2017Anqi WuMikio C. AoiJonathan W. Pillow

An exciting branch of machine learning research focuses on methods for learning, optimizing, and integrating unknown functions that are difficult or costly to evaluate. A popular Bayesian approach to this problem uses a Gaussian process (GP) to construct a posterior distribution over the function of interest given a set of observed measurements, and selects new points to evaluate using the statistics of this posterior... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet