Exploration in Model-based Reinforcement Learning by Empirically Estimating Learning Progress

Formal exploration approaches in model-based reinforcement learning estimate the accuracy of the currently learned model without consideration of the empirical prediction error. For example, PAC-MDP approaches such as Rmax base their model certainty on the amount of collected data, while Bayesian approaches assume a prior over the transition dynamics... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet