Exponential Lower Bounds for Batch Reinforcement Learning: Batch RL can be Exponentially Harder than Online RL

14 Dec 2020  ·  Andrea Zanette ·

Several practical applications of reinforcement learning involve an agent learning from past data without the possibility of further exploration. Often these applications require us to 1) identify a near optimal policy or to 2) estimate the value of a target policy. For both tasks we derive \emph{exponential} information-theoretic lower bounds in discounted infinite horizon MDPs with a linear function representation for the action value function even if 1) \emph{realizability} holds, 2) the batch algorithm observes the exact reward and transition \emph{functions}, and 3) the batch algorithm is given the \emph{best} a priori data distribution for the problem class. Our work introduces a new `oracle + batch algorithm' framework to prove lower bounds that hold for every distribution. The work shows an exponential separation between batch and online reinforcement learning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here