Extracting Interpretable Concept-Based Decision Trees from CNNs

11 Jun 2019  ·  Conner Chyung, Michael Tsang, Yan Liu ·

In an attempt to gather a deeper understanding of how convolutional neural networks (CNNs) reason about human-understandable concepts, we present a method to infer labeled concept data from hidden layer activations and interpret the concepts through a shallow decision tree. The decision tree can provide information about which concepts a model deems important, as well as provide an understanding of how the concepts interact with each other. Experiments demonstrate that the extracted decision tree is capable of accurately representing the original CNN's classifications at low tree depths, thus encouraging human-in-the-loop understanding of discriminative concepts.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here