Extraction of hierarchical functional connectivity components in human brain using resting-state fMRI

19 Jun 2019  ·  Dushyant Sahoo, Theodore D. Satterthwaite, Christos Davatzikos ·

The study of hierarchy in networks of the human brain has been of significant interest among the researchers as numerous studies have pointed out towards a functional hierarchical organization of the human brain. This paper provides a novel method for the extraction of hierarchical connectivity components in the human brain using resting-state fMRI. The method builds upon prior work of Sparse Connectivity Patterns (SCPs) by introducing a hierarchy of sparse overlapping patterns. The components are estimated by deep factorization of correlation matrices generated from fMRI. The goal of the paper is to extract interpretable hierarchical patterns using correlation matrices where a low rank decomposition is formed by a linear combination of a high rank decomposition. We formulate the decomposition as a non-convex optimization problem and solve it using gradient descent algorithms with adaptive step size. We also provide a method for the warm start of the gradient descent using singular value decomposition. We demonstrate the effectiveness of the developed method on two different real-world datasets by showing that multi-scale hierarchical SCPs are reproducible between sub-samples and are more reproducible as compared to single scale patterns. We also compare our method with existing hierarchical community detection approaches. Our method also provides novel insight into the functional organization of the human brain.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here