Extractor-Based Time-Space Lower Bounds for Learning

8 Aug 2017  ·  Sumegha Garg, Ran Raz, Avishay Tal ·

A matrix $M: A \times X \rightarrow \{-1,1\}$ corresponds to the following learning problem: An unknown element $x \in X$ is chosen uniformly at random. A learner tries to learn $x$ from a stream of samples, $(a_1, b_1), (a_2, b_2) \ldots$, where for every $i$, $a_i \in A$ is chosen uniformly at random and $b_i = M(a_i,x)$. Assume that $k,\ell, r$ are such that any submatrix of $M$ of at least $2^{-k} \cdot |A|$ rows and at least $2^{-\ell} \cdot |X|$ columns, has a bias of at most $2^{-r}$. We show that any learning algorithm for the learning problem corresponding to $M$ requires either a memory of size at least $\Omega\left(k \cdot \ell \right)$, or at least $2^{\Omega(r)}$ samples. The result holds even if the learner has an exponentially small success probability (of $2^{-\Omega(r)}$). In particular, this shows that for a large class of learning problems, any learning algorithm requires either a memory of size at least $\Omega\left((\log |X|) \cdot (\log |A|)\right)$ or an exponential number of samples, achieving a tight $\Omega\left((\log |X|) \cdot (\log |A|)\right)$ lower bound on the size of the memory, rather than a bound of $\Omega\left(\min\left\{(\log |X|)^2,(\log |A|)^2\right\}\right)$ obtained in previous works [R17,MM17b]. Moreover, our result implies all previous memory-samples lower bounds, as well as a number of new applications. Our proof builds on [R17] that gave a general technique for proving memory-samples lower bounds.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here