f-Divergence constrained policy improvement

29 Dec 2017 Boris Belousov Jan Peters

To ensure stability of learning, state-of-the-art generalized policy iteration algorithms augment the policy improvement step with a trust region constraint bounding the information loss. The size of the trust region is commonly determined by the Kullback-Leibler (KL) divergence, which not only captures the notion of distance well but also yields closed-form solutions... (read more)

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet