Factor Analysis on Citation, Using a Combined Latent and Logistic Regression Model

2 Dec 2019  ·  Namjoon Suh, Xiaoming Huo, Eric Heim, Lee Seversky ·

We propose a combined model, which integrates the latent factor model and the logistic regression model, for the citation network. It is noticed that neither a latent factor model nor a logistic regression model alone is sufficient to capture the structure of the data. The proposed model has a latent (i.e., factor analysis) model to represents the main technological trends (a.k.a., factors), and adds a sparse component that captures the remaining ad-hoc dependence. Parameter estimation is carried out through the construction of a joint-likelihood function of edges and properly chosen penalty terms. The convexity of the objective function allows us to develop an efficient algorithm, while the penalty terms push towards a low-dimensional latent component and a sparse graphical structure. Simulation results show that the proposed method works well in practical situations. The proposed method has been applied to a real application, which contains a citation network of statisticians (Ji and Jin, 2016). Some interesting findings are reported.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.