Factorised Neural Relational Inference for Multi-Interaction Systems

21 May 2019  ·  Ezra Webb, Ben Day, Helena Andres-Terre, Pietro Lió ·

Many complex natural and cultural phenomena are well modelled by systems of simple interactions between particles. A number of architectures have been developed to articulate this kind of structure, both implicitly and explicitly. We consider an unsupervised explicit model, the NRI model, and make a series of representational adaptations and physically motivated changes. Most notably we factorise the inferred latent interaction graph into a multiplex graph, allowing each layer to encode for a different interaction-type. This fNRI model is smaller in size and significantly outperforms the original in both edge and trajectory prediction, establishing a new state-of-the-art. We also present a simplified variant of our model, which demonstrates the NRI's formulation as a variational auto-encoder is not necessary for good performance, and make an adaptation to the NRI's training routine, significantly improving its ability to model complex physical dynamical systems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here