Fair Disaster Containment via Graph-Cut Problems

9 Jun 2021  ·  Michael Dinitz, Aravind Srinivasan, Leonidas Tsepenekas, Anil Vullikanti ·

Graph cut problems are fundamental in Combinatorial Optimization, and are a central object of study in both theory and practice. Furthermore, the study of \emph{fairness} in Algorithmic Design and Machine Learning has recently received significant attention, with many different notions proposed and analyzed for a variety of contexts. In this paper we initiate the study of fairness for graph cut problems by giving the first fair definitions for them, and subsequently we demonstrate appropriate algorithmic techniques that yield a rigorous theoretical analysis. Specifically, we incorporate two different notions of fairness, namely \emph{demographic} and \emph{probabilistic individual} fairness, in a particular cut problem that models disaster containment scenarios. Our results include a variety of approximation algorithms with provable theoretical guarantees.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here