Paper

FAL-CUR: Fair Active Learning using Uncertainty and Representativeness on Fair Clustering

Active Learning (AL) techniques have proven to be highly effective in reducing data labeling costs across a range of machine learning tasks. Nevertheless, one known challenge of these methods is their potential to introduce unfairness towards sensitive attributes. Although recent approaches have focused on enhancing fairness in AL, they tend to reduce the model's accuracy. To address this issue, we propose a novel strategy, named Fair Active Learning using fair Clustering, Uncertainty, and Representativeness (FAL-CUR), to improve fairness in AL. FAL-CUR tackles the fairness problem in AL by combining fair clustering with an acquisition function that determines which samples to query based on their uncertainty and representativeness scores. We evaluate the performance of FAL-CUR on four real-world datasets, and the results demonstrate that FAL-CUR achieves a 15% - 20% improvement in fairness compared to the best state-of-the-art method in terms of equalized odds while maintaining stable accuracy scores. Furthermore, an ablation study highlights the crucial roles of fair clustering in preserving fairness and the acquisition function in stabilizing the accuracy performance.

Results in Papers With Code
(↓ scroll down to see all results)