Fast 3D Acoustic Scattering via Discrete Laplacian Based Implicit Function Encoders

1 Jan 2021  ·  Hsien-Yu Meng, Zhenyu Tang, Dinesh Manocha ·

Acoustic properties of objects corresponding to scattering characteristics are frequently used for 3D audio content creation, environmental acoustic effects, localization and acoustic scene analysis, etc. The numeric solvers used to compute these acoustic properties are too slow for interactive applications. We present a novel geometric deep learning algorithm based on discrete-laplacian and implicit encoders to compute these characteristics for rigid or deformable objects at interactive rates. We use a point cloud approximation of each object, and each point is encoded in a high-dimensional latent space. Our multi-layer network can accurately estimate these acoustic properties for arbitrary topologies and takes less than 1ms per object on a NVIDIA GeForce RTX 2080 Ti GPU. We also prove that our learning method is permutation and rotation invariant and demonstrate high accuracy on objects that are quite different from the training data. We highlight its application to generating environmental acoustic effects in dynamic environments.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here