FAST: A Framework to Accelerate Super-Resolution Processing on Compressed Videos

29 Mar 2016 Zhengdong Zhang Vivienne Sze

State-of-the-art super-resolution (SR) algorithms require significant computational resources to achieve real-time throughput (e.g., 60Mpixels/s for HD video). This paper introduces FAST (Free Adaptive Super-resolution via Transfer), a framework to accelerate any SR algorithm applied to compressed videos... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet