Fast Amortized Inference and Learning in Log-linear Models with Randomly Perturbed Nearest Neighbor Search

11 Jul 2017  ·  Stephen Mussmann, Daniel Levy, Stefano Ermon ·

Inference in log-linear models scales linearly in the size of output space in the worst-case. This is often a bottleneck in natural language processing and computer vision tasks when the output space is feasibly enumerable but very large. We propose a method to perform inference in log-linear models with sublinear amortized cost. Our idea hinges on using Gumbel random variable perturbations and a pre-computed Maximum Inner Product Search data structure to access the most-likely elements in sublinear amortized time. Our method yields provable runtime and accuracy guarantees. Further, we present empirical experiments on ImageNet and Word Embeddings showing significant speedups for sampling, inference, and learning in log-linear models.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here