Fast and Effective L0 Gradient Minimization by Region Fusion

ICCV 2015  ·  Rang M. H. Nguyen, Michael S. Brown ·

L_0 gradient minimization can be applied to an input signal to control the number of non-zero gradients. This is useful in reducing small gradients generally associated with signal noise, while preserving important signal features. In computer vision, L_0 gradient minimization has found applications in image denoising, 3D mesh denoising, and image enhancement. Minimizing the L_0 norm, however, is an NP-hard problem because of its non-convex property. As a result, existing methods rely on approximation strategies to perform the minimization. In this paper, we present a new method to perform L_0 gradient minimization that is fast and effective. Our method uses a descent approach based on region fusion that converges faster than other methods while providing a better approximation of the optimal L_0 norm. In addition, our method can be applied to both 2D images and 3D mesh topologies. The effectiveness of our approach is demonstrated on a number of examples.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here