Fast Computation of Wasserstein Barycenters

16 Oct 2013  ·  Marco Cuturi, Arnaud Doucet ·

We present new algorithms to compute the mean of a set of empirical probability measures under the optimal transport metric. This mean, known as the Wasserstein barycenter, is the measure that minimizes the sum of its Wasserstein distances to each element in that set. We propose two original algorithms to compute Wasserstein barycenters that build upon the subgradient method. A direct implementation of these algorithms is, however, too costly because it would require the repeated resolution of large primal and dual optimal transport problems to compute subgradients. Extending the work of Cuturi (2013), we propose to smooth the Wasserstein distance used in the definition of Wasserstein barycenters with an entropic regularizer and recover in doing so a strictly convex objective whose gradients can be computed for a considerably cheaper computational cost using matrix scaling algorithms. We use these algorithms to visualize a large family of images and to solve a constrained clustering problem.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here