Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet Log-Sobolev

NeurIPS 2020  ·  Xiao Wang, Qi Lei, Ioannis Panageas ·

Sampling is a fundamental and arguably very important task with numerous applications in Machine Learning. One approach to sample from a high dimensional distribution $e^{-f}$ for some function $f$ is the Langevin Algorithm (LA)... Recently, there has been a lot of progress in showing fast convergence of LA even in cases where $f$ is non-convex, notably [53], [39] in which the former paper focuses on functions $f$ defined in $\mathbb{R}^n$ and the latter paper focuses on functions with symmetries (like matrix completion type objectives) with manifold structure. Our work generalizes the results of [53] where $f$ is defined on a manifold $M$ rather than $\mathbb{R}^n$. From technical point of view, we show that KL decreases in a geometric rate whenever the distribution $e^{-f}$ satisfies a log-Sobolev inequality on $M$. read more

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here