Policy Optimization for Constrained MDPs with Provable Fast Global Convergence

31 Oct 2021  ·  Tao Liu, Ruida Zhou, Dileep Kalathil, P. R. Kumar, Chao Tian ·

We address the problem of finding the optimal policy of a constrained Markov decision process (CMDP) using a gradient descent-based algorithm. Previous results have shown that a primal-dual approach can achieve an $\mathcal{O}(1/\sqrt{T})$ global convergence rate for both the optimality gap and the constraint violation. We propose a new algorithm called policy mirror descent-primal dual (PMD-PD) algorithm that can provably achieve a faster $\mathcal{O}(\log(T)/T)$ convergence rate for both the optimality gap and the constraint violation. For the primal (policy) update, the PMD-PD algorithm utilizes a modified value function and performs natural policy gradient steps, which is equivalent to a mirror descent step with appropriate regularization. For the dual update, the PMD-PD algorithm uses modified Lagrange multipliers to ensure a faster convergence rate. We also present two extensions of this approach to the settings with zero constraint violation and sample-based estimation. Experimental results demonstrate the faster convergence rate and the better performance of the PMD-PD algorithm compared with existing policy gradient-based algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here