Fast improvement of TEM image with low-dose electrons by deep learning

3 Jun 2021  ·  Hiroyasu Katsuno, Yuki Kimura, Tomoya Yamazaki, Ichigaku Takigawa ·

Low-electron-dose observation is indispensable for observing various samples using a transmission electron microscope; consequently, image processing has been used to improve transmission electron microscopy (TEM) images. To apply such image processing to in situ observations, we here apply a convolutional neural network to TEM imaging. Using a dataset that includes short-exposure images and long-exposure images, we develop a pipeline for processed short-exposure images, based on end-to-end training. The quality of images acquired with a total dose of approximately 5 e- per pixel becomes comparable to that of images acquired with a total dose of approximately 1000 e- per pixel. Because the conversion time is approximately 8 ms, in situ observation at 125 fps is possible. This imaging technique enables in situ observation of electron-beam-sensitive specimens.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here