Fast Landmark Subspace Clustering

28 Oct 2015  ·  Xu Wang, Gilad Lerman ·

Kernel methods obtain superb performance in terms of accuracy for various machine learning tasks since they can effectively extract nonlinear relations. However, their time complexity can be rather large especially for clustering tasks. In this paper we define a general class of kernels that can be easily approximated by randomization. These kernels appear in various applications, in particular, traditional spectral clustering, landmark-based spectral clustering and landmark-based subspace clustering. We show that for $n$ data points from $K$ clusters with $D$ landmarks, the randomization procedure results in an algorithm of complexity $O(KnD)$. Furthermore, we bound the error between the original clustering scheme and its randomization. To illustrate the power of this framework, we propose a new fast landmark subspace (FLS) clustering algorithm. Experiments over synthetic and real datasets demonstrate the superior performance of FLS in accelerating subspace clustering with marginal sacrifice of accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here