Fast learning rates with heavy-tailed losses

We study fast learning rates when the losses are not necessarily bounded and may have a distribution with heavy tails. To enable such analyses, we introduce two new conditions: (i) the envelope function $\sup_{f \in \mathcal{F}}|\ell \circ f|$, where $\ell$ is the loss function and $\mathcal{F}$ is the hypothesis class, exists and is $L^r$-integrable, and (ii) $\ell$ satisfies the multi-scale Bernstein's condition on $\mathcal{F}$. Under these assumptions, we prove that learning rate faster than $O(n^{-1/2})$ can be obtained and, depending on $r$ and the multi-scale Bernstein's powers, can be arbitrarily close to $O(n^{-1})$. We then verify these assumptions and derive fast learning rates for the problem of vector quantization by $k$-means clustering with heavy-tailed distributions. The analyses enable us to obtain novel learning rates that extend and complement existing results in the literature from both theoretical and practical viewpoints.

PDF Abstract NeurIPS 2016 PDF NeurIPS 2016 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here