Fast Multi-Instance Multi-Label Learning

8 Oct 2013Sheng-Jun HuangZhi-Hua Zhou

In many real-world tasks, particularly those involving data objects with complicated semantics such as images and texts, one object can be represented by multiple instances and simultaneously be associated with multiple labels. Such tasks can be formulated as multi-instance multi-label learning (MIML) problems, and have been extensively studied during the past few years... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet