Fast, smooth and adaptive regression in metric spaces

NeurIPS 2009  ·  Samory Kpotufe ·

It was recently shown that certain nonparametric regressors can escape the curse of dimensionality in the sense that their convergence rates adapt to the intrinsic dimension of data (\cite{BL:65, SK:77}). We prove some stronger results in more general settings. In particular, we consider a regressor which, by combining aspects of both tree-based regression and kernel regression, operates on a general metric space, yields a smooth function, and evaluates in time $O(\log n)$. We derive a tight convergence rate of the form $n^{-2/(2+d)}$ where $d$ is the Assouad dimension of the input space.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here