Fast Sparse Least-Squares Regression with Non-Asymptotic Guarantees

18 Jul 2015  ·  Tianbao Yang, Lijun Zhang, Qihang Lin, Rong Jin ·

In this paper, we study a fast approximation method for {\it large-scale high-dimensional} sparse least-squares regression problem by exploiting the Johnson-Lindenstrauss (JL) transforms, which embed a set of high-dimensional vectors into a low-dimensional space. In particular, we propose to apply the JL transforms to the data matrix and the target vector and then to solve a sparse least-squares problem on the compressed data with a {\it slightly larger regularization parameter}. Theoretically, we establish the optimization error bound of the learned model for two different sparsity-inducing regularizers, i.e., the elastic net and the $\ell_1$ norm. Compared with previous relevant work, our analysis is {\it non-asymptotic and exhibits more insights} on the bound, the sample complexity and the regularization. As an illustration, we also provide an error bound of the {\it Dantzig selector} under JL transforms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here