Fast Trust Region for Segmentation

CVPR 2013  ·  Lena Gorelick, Frank R. Schmidt, Yuri Boykov ·

Trust region is a well-known general iterative approach to optimization which offers many advantages over standard gradient descent techniques. In particular, it allows more accurate nonlinear approximation models. In each iteration this approach computes a global optimum of a suitable approximation model within a fixed radius around the current solution, a.k.a. trust region. In general, this approach can be used only when some efficient constrained optimization algorithm is available for the selected nonlinear (more accurate) approximation model. In this paper we propose a Fast Trust Region (FTR) approach for optimization of segmentation energies with nonlinear regional terms, which are known to be challenging for existing algorithms. These energies include, but are not limited to, KL divergence and Bhattacharyya distance between the observed and the target appearance distributions, volume constraint on segment size, and shape prior constraint in a form of L 2 distance from target shape moments. Our method is 1-2 orders of magnitude faster than the existing state-of-the-art methods while converging to comparable or better solutions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here