We study the problem of "isotropically rounding" a polytope $K\subset\mathbb{R}^n$, that is, computing a linear transformation which makes the uniform distribution on the polytope have roughly identity covariance matrix. We assume $K$ is defined by $m$ linear inequalities, with guarantee that $rB\subset K\subset RB$, where $B$ is the unit ball... (read more)

PDF
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.

METHOD | TYPE | |
---|---|---|

🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |