Faster quantum mixing for slowly evolving sequences of Markov chains

4 Mar 2015  ·  Davide Orsucci, Hans J. Briegel, Vedran Dunjko ·

Markov chain methods are remarkably successful in computational physics, machine learning, and combinatorial optimization. The cost of such methods often reduces to the mixing time, i.e., the time required to reach the steady state of the Markov chain, which scales as $\delta^{-1}$, the inverse of the spectral gap. It has long been conjectured that quantum computers offer nearly generic quadratic improvements for mixing problems. However, except in special cases, quantum algorithms achieve a run-time of $\mathcal{O}(\sqrt{\delta^{-1}} \sqrt{N})$, which introduces a costly dependence on the Markov chain size $N,$ not present in the classical case. Here, we re-address the problem of mixing of Markov chains when these form a slowly evolving sequence. This setting is akin to the simulated annealing setting and is commonly encountered in physics, material sciences and machine learning. We provide a quantum memory-efficient algorithm with a run-time of $\mathcal{O}(\sqrt{\delta^{-1}} \sqrt[4]{N})$, neglecting logarithmic terms, which is an important improvement for large state spaces. Moreover, our algorithms output quantum encodings of distributions, which has advantages over classical outputs. Finally, we discuss the run-time bounds of mixing algorithms and show that, under certain assumptions, our algorithms are optimal.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here