Faster Rates for Convex-Concave Games

17 May 2018  ·  Jacob Abernethy, Kevin A. Lai, Kfir. Y. Levy, Jun-Kun Wang ·

We consider the use of no-regret algorithms to compute equilibria for particular classes of convex-concave games. While standard regret bounds would lead to convergence rates on the order of $O(T^{-1/2})$, recent work \citep{RS13,SALS15} has established $O(1/T)$ rates by taking advantage of a particular class of optimistic prediction algorithms. In this work we go further, showing that for a particular class of games one achieves a $O(1/T^2)$ rate, and we show how this applies to the Frank-Wolfe method and recovers a similar bound \citep{D15}. We also show that such no-regret techniques can even achieve a linear rate, $O(\exp(-T))$, for equilibrium computation under additional curvature assumptions.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here