FEAR: Fast, Efficient, Accurate and Robust Visual Tracker

15 Dec 2021  ·  Vasyl Borsuk, Roman Vei, Orest Kupyn, Tetiana Martyniuk, Igor Krashenyi, Jiři Matas ·

We present FEAR, a novel, fast, efficient, accurate, and robust Siamese visual tracker. We introduce an architecture block for object model adaption, called dual-template representation, and a pixel-wise fusion block to achieve extra flexibility and efficiency of the model. The dual-template module incorporates temporal information with only a single learnable parameter, while the pixel-wise fusion block encodes more discriminative features with fewer parameters compared to standard correlation modules. By plugging-in sophisticated backbones with the novel modules, FEAR-M and FEAR-L trackers surpass most Siamesetrackers on several academic benchmarks in both accuracy and efficiencies. Employed with the lightweight backbone, the optimized version FEAR-XS offers more than 10 times faster tracking than current Siamese trackers while maintaining near state-of-the-art results. FEAR-XS tracker is 2.4x smaller and 4.3x faster than LightTrack [62] with superior accuracy. In addition, we expand the definition of the model efficiency by introducing a benchmark on energy consumption and execution speed. Source code, pre-trained models, and evaluation protocol will be made available upon request

PDF Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here