Feature Importance Measure for Non-linear Learning Algorithms

Complex problems may require sophisticated, non-linear learning methods such as kernel machines or deep neural networks to achieve state of the art prediction accuracies. However, high prediction accuracies are not the only objective to consider when solving problems using machine learning... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet