Feature-informed Latent Space Regularization for Music Source Separation

17 Mar 2022  ·  Yun-Ning Hung, Alexander Lerch ·

The integration of additional side information to improve music source separation has been investigated numerous times, e.g., by adding features to the input or by adding learning targets in a multi-task learning scenario. These approaches, however, require additional annotations such as musical scores, instrument labels, etc. in training and possibly during inference. The available datasets for source separation do not usually provide these additional annotations. In this work, we explore transfer learning strategies to incorporate VGGish features with a state-of-the-art source separation model; VGGish features are known to be a very condensed representation of audio content and have been successfully used in many MIR tasks. We introduce three approaches to incorporate the features, including two latent space regularization methods and one naive concatenation method. Experimental results show that our proposed approaches improve several evaluation metrics for music source separation.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here