Federated Optimization:Distributed Optimization Beyond the Datacenter

11 Nov 2015  ·  Jakub Konečný, Brendan Mcmahan, Daniel Ramage ·

We introduce a new and increasingly relevant setting for distributed optimization in machine learning, where the data defining the optimization are distributed (unevenly) over an extremely large number of \nodes, but the goal remains to train a high-quality centralized model. We refer to this setting as Federated Optimization. In this setting, communication efficiency is of utmost importance. A motivating example for federated optimization arises when we keep the training data locally on users' mobile devices rather than logging it to a data center for training. Instead, the mobile devices are used as nodes performing computation on their local data in order to update a global model. We suppose that we have an extremely large number of devices in our network, each of which has only a tiny fraction of data available totally; in particular, we expect the number of data points available locally to be much smaller than the number of devices. Additionally, since different users generate data with different patterns, we assume that no device has a representative sample of the overall distribution. We show that existing algorithms are not suitable for this setting, and propose a new algorithm which shows encouraging experimental results. This work also sets a path for future research needed in the context of federated optimization.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here