FewGAN: Generating from the Joint Distribution of a Few Images

18 Jul 2022  ·  Lior Ben-Moshe, Sagie Benaim, Lior Wolf ·

We introduce FewGAN, a generative model for generating novel, high-quality and diverse images whose patch distribution lies in the joint patch distribution of a small number of N>1 training samples. The method is, in essence, a hierarchical patch-GAN that applies quantization at the first coarse scale, in a similar fashion to VQ-GAN, followed by a pyramid of residual fully convolutional GANs at finer scales. Our key idea is to first use quantization to learn a fixed set of patch embeddings for training images. We then use a separate set of side images to model the structure of generated images using an autoregressive model trained on the learned patch embeddings of training images. Using quantization at the coarsest scale allows the model to generate both conditional and unconditional novel images. Subsequently, a patch-GAN renders the fine details, resulting in high-quality images. In an extensive set of experiments, it is shown that FewGAN outperforms baselines both quantitatively and qualitatively.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here