FFT-based Selection and Optimization of Statistics for Robust Recognition of Severely Corrupted Images

21 Mar 2024  ·  Elena Camuffo, Umberto Michieli, Jijoong Moon, Daehyun Kim, Mete Ozay ·

Improving model robustness in case of corrupted images is among the key challenges to enable robust vision systems on smart devices, such as robotic agents. Particularly, robust test-time performance is imperative for most of the applications. This paper presents a novel approach to improve robustness of any classification model, especially on severely corrupted images. Our method (FROST) employs high-frequency features to detect input image corruption type, and select layer-wise feature normalization statistics. FROST provides the state-of-the-art results for different models and datasets, outperforming competitors on ImageNet-C by up to 37.1% relative gain, improving baseline of 40.9% mCE on severe corruptions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here