Finding Alternate Features in Lasso

18 Nov 2016  ·  Satoshi Hara, Takanori Maehara ·

We propose a method for finding alternate features missing in the Lasso optimal solution. In ordinary Lasso problem, one global optimum is obtained and the resulting features are interpreted as task-relevant features. However, this can overlook possibly relevant features not selected by the Lasso. With the proposed method, we can provide not only the Lasso optimal solution but also possible alternate features to the Lasso solution. We show that such alternate features can be computed efficiently by avoiding redundant computations. We also demonstrate how the proposed method works in the 20 newsgroup data, which shows that reasonable features are found as alternate features.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here