Finding an $ε$-close Variation of Parameters in Bayesian Networks

17 May 2023  ·  Bahare Salmani, Joost-Pieter Katoen ·

This paper addresses the $\epsilon$-close parameter tuning problem for Bayesian Networks (BNs): find a minimal $\epsilon$-close amendment of probability entries in a given set of (rows in) conditional probability tables that make a given quantitative constraint on the BN valid. Based on the state-of-the-art "region verification" techniques for parametric Markov chains, we propose an algorithm whose capabilities go beyond any existing techniques. Our experiments show that $\epsilon$-close tuning of large BN benchmarks with up to 8 parameters is feasible. In particular, by allowing (i) varied parameters in multiple CPTs and (ii) inter-CPT parameter dependencies, we treat subclasses of parametric BNs that have received scant attention so far.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here