Finding Common Characteristics Among NBA Playoff and Championship Teams: A Machine Learning Approach

18 Apr 2016 Ikjyot Singh Kohli

In this paper, we employ machine learning techniques to analyze seventeen seasons (1999-2000 to 2015-2016) of NBA regular season data from every team to determine the common characteristics among NBA playoff teams. Each team was characterized by 26 predictor variables and one binary response variable taking on a value of "TRUE" if a team had made the playoffs, and value of "FALSE" if a team had missed the playoffs... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet