Finite Time Performance Analysis of MIMO Systems Identification

18 Oct 2023  ·  Shuai Sun, Jiayun Li, Yilin Mo ·

This paper is concerned with the finite time identification performance of an n dimensional discrete-time Multiple-Input Multiple-Output (MIMO) Linear Time-Invariant system, with p inputs and m outputs. We prove that the widely-used Ho-Kalman algorithm and Multivariable Output Error State Space (MOESP) algorithm are ill-conditioned for MIMO system when n/m or n/p is large. Moreover, by analyzing the Cramer-Rao bound, we derive a fundamental limit for identifying the real and stable (or marginally stable) poles of MIMO system and prove that the sample complexity for any unbiased pole estimation algorithm to reach a certain level of accuracy explodes superpolynomially with respect to n/(pm). Numerical results are provided to illustrate the ill-conditionedness of Ho-Kalman algorithm and MOESP algorithm as well as the fundamental limit on identification.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here