First-order Optimization for Superquantile-based Supervised Learning

30 Sep 2020  ·  Yassine Laguel, Jérôme Malick, Zaid Harchaoui ·

Classical supervised learning via empirical risk (or negative log-likelihood) minimization hinges upon the assumption that the testing distribution coincides with the training distribution. This assumption can be challenged in modern applications of machine learning in which learning machines may operate at prediction time with testing data whose distribution departs from the one of the training data. We revisit the superquantile regression method by proposing a first-order optimization algorithm to minimize a superquantile-based learning objective. The proposed algorithm is based on smoothing the superquantile function by infimal convolution. Promising numerical results illustrate the interest of the approach towards safer supervised learning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here