Fitting 3D Shapes from Partial and Noisy Point Clouds with Evolutionary Computing

20 Jan 2019  ·  Jean F. Liénard ·

Point clouds obtained from photogrammetry are noisy and incomplete models of reality. We propose an evolutionary optimization methodology that is able to approximate the underlying object geometry on such point clouds. This approach assumes a priori knowledge on the 3D structure modeled and enables the identification of a collection of primitive shapes approximating the scene. Built-in mechanisms that enforce high shape diversity and adaptive population size make this method suitable to modeling both simple and complex scenes. We focus here on the case of cylinder approximations and we describe, test, and compare a set of mutation operators designed for optimal exploration of their search space. We assess the robustness and limitations of this algorithm through a series of synthetic examples, and we finally demonstrate its general applicability on two real-life cases in vegetation and industrial settings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here