On the Generalized Essential Matrix Correction: An efficient solution to the problem and its applications

19 Sep 2017  ·  Pedro Miraldo, Joao R. Cardoso ·

This paper addresses the problem of finding the closest generalized essential matrix from a given $6\times 6$ matrix, with respect to the Frobenius norm. To the best of our knowledge, this nonlinear constrained optimization problem has not been addressed in the literature yet. Although it can be solved directly, it involves a large number of constraints, and any optimization method to solve it would require much computational effort. We start by deriving a couple of unconstrained formulations of the problem. After that, we convert the original problem into a new one, involving only orthogonal constraints, and propose an efficient algorithm of steepest descent-type to find its solution. To test the algorithms, we evaluate the methods with synthetic data and conclude that the proposed steepest descent-type approach is much faster than the direct application of general optimization techniques to the original formulation with 33 constraints and to the unconstrained ones. To further motivate the relevance of our method, we apply it in two pose problems (relative and absolute) using synthetic and real data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here