Fixation Bank: Learning to Reweight Fixation Candidates

CVPR 2015 Jiaping ZhaoChristian SiagianLaurent Itti

Predicting where humans will fixate in a scene has many practical applications. Biologically-inspired saliency models decompose visual stimuli into feature maps across multiple scales, and then integrate different feature channels, e.g., in a linear, MAX, or MAP... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet