JFB: Jacobian-Free Backpropagation for Implicit Networks

23 Mar 2021  ·  Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel Mckenzie, Stanley Osher, Wotao Yin ·

A promising trend in deep learning replaces traditional feedforward networks with implicit networks. Unlike traditional networks, implicit networks solve a fixed point equation to compute inferences. Solving for the fixed point varies in complexity, depending on provided data and an error tolerance. Importantly, implicit networks may be trained with fixed memory costs in stark contrast to feedforward networks, whose memory requirements scale linearly with depth. However, there is no free lunch -- backpropagation through implicit networks often requires solving a costly Jacobian-based equation arising from the implicit function theorem. We propose Jacobian-Free Backpropagation (JFB), a fixed-memory approach that circumvents the need to solve Jacobian-based equations. JFB makes implicit networks faster to train and significantly easier to implement, without sacrificing test accuracy. Our experiments show implicit networks trained with JFB are competitive with feedforward networks and prior implicit networks given the same number of parameters.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here