FLARE: A New Federated Learning Framework with Adjustable Learning Rates over Resource-Constrained Wireless Networks

23 Apr 2024  ·  Bingnan Xiao, Jingjing Zhang, Wei Ni, Xin Wang ·

Wireless federated learning (WFL) suffers from heterogeneity prevailing in the data distributions, computing powers, and channel conditions of participating devices. This paper presents a new Federated Learning with Adjusted leaRning ratE (FLARE) framework to mitigate the impact of the heterogeneity. The key idea is to allow the participating devices to adjust their individual learning rates and local training iterations, adapting to their instantaneous computing powers. The convergence upper bound of FLARE is established rigorously under a general setting with non-convex models in the presence of non-i.i.d. datasets and imbalanced computing powers. By minimizing the upper bound, we further optimize the scheduling of FLARE to exploit the channel heterogeneity. A nested problem structure is revealed to facilitate iteratively allocating the bandwidth with binary search and selecting devices with a new greedy method. A linear problem structure is also identified and a low-complexity linear programming scheduling policy is designed when training models have large Lipschitz constants. Experiments demonstrate that FLARE consistently outperforms the baselines in test accuracy, and converges much faster with the proposed scheduling policy.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here