Flexible and Robust Counterfactual Explanations with Minimal Satisfiable Perturbations

9 Sep 2023  ·  Yongjie Wang, Hangwei Qian, Yongjie Liu, Wei Guo, Chunyan Miao ·

Counterfactual explanations (CFEs) exemplify how to minimally modify a feature vector to achieve a different prediction for an instance. CFEs can enhance informational fairness and trustworthiness, and provide suggestions for users who receive adverse predictions. However, recent research has shown that multiple CFEs can be offered for the same instance or instances with slight differences. Multiple CFEs provide flexible choices and cover diverse desiderata for user selection. However, individual fairness and model reliability will be damaged if unstable CFEs with different costs are returned. Existing methods fail to exploit flexibility and address the concerns of non-robustness simultaneously. To address these issues, we propose a conceptually simple yet effective solution named Counterfactual Explanations with Minimal Satisfiable Perturbations (CEMSP). Specifically, CEMSP constrains changing values of abnormal features with the help of their semantically meaningful normal ranges. For efficiency, we model the problem as a Boolean satisfiability problem to modify as few features as possible. Additionally, CEMSP is a general framework and can easily accommodate more practical requirements, e.g., casualty and actionability. Compared to existing methods, we conduct comprehensive experiments on both synthetic and real-world datasets to demonstrate that our method provides more robust explanations while preserving flexibility.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods