FLLIC: Functionally Lossless Image Compression

24 Jan 2024  ·  Xi Zhang, Xiaolin Wu ·

Recently, DNN models for lossless image coding have surpassed their traditional counterparts in compression performance, reducing the bit rate by about ten percent for natural color images. But even with these advances, mathematically lossless image compression (MLLIC) ratios for natural images still fall short of the bandwidth and cost-effectiveness requirements of most practical imaging and vision systems at present and beyond. To break the bottleneck of MLLIC in compression performance, we question the necessity of MLLIC, as almost all digital sensors inherently introduce acquisition noises, making mathematically lossless compression counterproductive. Therefore, in contrast to MLLIC, we propose a new paradigm of joint denoising and compression called functionally lossless image compression (FLLIC), which performs lossless compression of optimally denoised images (the optimality may be task-specific). Although not literally lossless with respect to the noisy input, FLLIC aims to achieve the best possible reconstruction of the latent noise-free original image. Extensive experiments show that FLLIC achieves state-of-the-art performance in joint denoising and compression of noisy images and does so at a lower computational cost.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here