Forced oscillation source localization from generator measurements

30 Sep 2023  ·  Melvyn Tyloo, Marc Vuffray, Andrey Y. Lokhov ·

Malfunctioning equipment, erroneous operating conditions or periodic load variations can cause periodic disturbances that would persist over time, creating an undesirable transfer of energy across the system -- an effect referred to as forced oscillations. Wide-area oscillations may damage assets, trigger inadvertent tripping or control actions, and be the cause of equipment failure. Unfortunately, for wide-area oscillations, the location, frequency, and amplitude of these forced oscillations may be hard to determine. Recently, a data-driven maximum-likelihood-based method was proposed to perform source localization in transmission grids under wide-area response scenarios. However, this method relies on full PMU coverage and all buses having inertia and damping. Here, we extend this method to realistic scenarios which includes buses without inertia or dumping, such as passive loads and inverter-based generators. Incorporating Kron reduction directly into the maximum likelihood estimator, we are able to identify the location and frequency of forcing applied at both traditional generators and loads.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here