Forecasting battery capacity and power degradation with multi-task learning

29 Nov 2021  ·  Weihan Li, Haotian Zhang, Bruis van Vlijmen, Philipp Dechent, Dirk Uwe Sauer ·

Lithium-ion batteries degrade due to usage and exposure to environmental conditions, which affects their capability to store energy and supply power. Accurately predicting the capacity and power fade of lithium-ion battery cells is challenging due to intrinsic manufacturing variances and coupled nonlinear ageing mechanisms. In this paper, we propose a data-driven prognostics framework to predict both capacity and power fade simultaneously with multi-task learning. The model is able to predict the degradation trajectory of both capacity and internal resistance together with knee-points and end-of-life points accurately at early-life stage. The validation shows an average percentage error of 2.37% and 1.24% for the prediction of capacity fade and resistance rise, respectively. The model's ability to accurately predict the degradation, facing capacity and resistance estimation errors, further demonstrates the model's robustness and generalizability. Compared with single-task learning models for forecasting capacity and power degradation, the model shows a significant prediction accuracy improvement and computational cost reduction. This work presents the highlights of multi-task learning in the degradation prognostics for lithium-ion batteries.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here