We consider the task of forecasting an infinite sequence of future observations based on some number of past observations, where the probability measure generating the observations is "suspected" to satisfy one or more of a set of incomplete models, i.e. convex sets in the space of probability measures. This setting is in some sense intermediate between the realizable setting where the probability measure comes from some known set of probability measures (which can be addressed using e.g. Bayesian inference) and the unrealizable setting where the probability measure is completely arbitrary... (read more)

PDF
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.

METHOD | TYPE | |
---|---|---|

🤖 No Methods Found | Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet |