Formal Policy Synthesis for Continuous-Space Systems via Reinforcement Learning

4 May 2020  ·  Milad Kazemi, Sadegh Soudjani ·

This paper studies satisfaction of temporal properties on unknown stochastic processes that have continuous state spaces. We show how reinforcement learning (RL) can be applied for computing policies that are finite-memory and deterministic using only the paths of the stochastic process. We address properties expressed in linear temporal logic (LTL) and use their automaton representation to give a path-dependent reward function maximised via the RL algorithm. We develop the required assumptions and theories for the convergence of the learned policy to the optimal policy in the continuous state space. To improve the performance of the learning on the constructed sparse reward function, we propose a sequential learning procedure based on a sequence of labelling functions obtained from the positive normal form of the LTL specification. We use this procedure to guide the RL algorithm towards a policy that converges to an optimal policy under suitable assumptions on the process. We demonstrate the approach on a 4-dim cart-pole system and 6-dim boat driving problem.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here